
Eur. Phys. J. D 46, 15–20 (2008)
DOI: 10.1140/epjd/e2007-00273-7 THE EUROPEAN

PHYSICAL JOURNAL D

Relativistic effects in the time evolution of an one-dimensional
model atom in a laser pulse

M. Bocaa and V. Florescu

Department of Physics, University of Bucharest, MG-11 Bucharest-Magurele, 077125 Magurele, Romania

Received 29 June 2007 / Received in final form 27 August 2007
Published online 26 September 2007 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2007

Abstract. We define 1D Volkov states as solutions of the one-dimensional Dirac equation in a time depen-
dent electric field, similar to the Volkov solutions in the three dimensional case. They are eigenspinors of the
momentum operator and reduce in the absence of the field to free solutions of positive or negative energy.
Then we add a time independent attractive Gausssian potential and, by integrating the Dirac equation for
a laser pulse of Gaussian shape, we determine the state which coincides initially with the ground state of
the system in the absence of the electric field. Our main objective is the study of the population dynamics
on the Volkov states during the pulse action. For different values of the laser pulse intensity and two values
of the potential depth, we find that the Volkov states which evolve from free solutions of negative energy
are practically not populated, in contrast to the population on free negative energy states.

PACS. 03.65.Pm Relativistic wave equations – 32.90.+a Other topics in atomic properties and interactions
of atoms with photons

1 Introduction

The impressive advances in laser technology have given ac-
cess to intensities at which the ponderomotive energy of
the electron becomes of the same order of magnitude with
its rest energy, making imperious the need for a relativistic
description of atom-laser interaction. The search for dif-
ferent approaches and methods of calculations is reflected
in many publications and in the recent ample review pa-
per by Salamin et al. [1]. As emphasised by Maquet and
Grobe [2], the relativisitic quantum mechanics of atoms
in super-intense laser field faces many challenges. Recent
calculations [3] have shed light on the correct way of inter-
preting concrete results using quantum electrodynamics.

In a calculation based on Dirac equation, both retar-
dation and relativistic effects are automatically taken into
account. There is a regime of field intensities and electron
energies in which the retardation effects only matter. A
calculation beyond the nonrelativistic dipole approxima-
tion takes into account the magnetic field influence on the
electron behaviour. It was suggested in the first calcula-
tions [4,5], and confirmed afterwards [6–9], that the main
effect of the magnetic field, taken into account through the
inclusion of the non-dipole terms, is to push the electron
along the field propagation direction such that at the end
of the laser pulse it is left very far from the nucleus, the
consequence being the atomic destabilization.

To our knowledge, the 3D Dirac equation for an atom
in a laser field was in fact not integrated numerically up
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to now. Only a few 1D (Protopapas et al. [10], Kylstra
et al. [11], Lenz et al. [12]) and 2D simulations [13–15]
have been published. For the realistic three dimensional
case, although several algorithms were proposed [16–18],
only results for the free electron in a plane wave laser field
exist [19]. A promising approximation scheme was pro-
posed by Krstic and Mittelman [20], in order to transform
the solving of the Dirac equation in a simpler numerical
problem.

One-dimensional time-dependent Schrödinger equa-
tion was a useful tool for the description of atom-laser
interaction leading to a qualitative description of phe-
nomena as above-threshold ionization [21] and to ex-
ploratory studies of dynamic stabilization [22]. For a rel-
ativistic description of atom-laser interaction the use of
one-dimensional Dirac equation is plagued by the fact that
one can not take into account the position dependence of
the external field, so automatically retardation effects are
ignored. It has the particularity of revealing only relativis-
tic effects.

Well aware of the limitations introduced by a study
based on 1D Dirac equation, we present here results of
several calculations based on it, with the hope that some
of the features of the time evolution of the system could
be qualitatively extended to the 3D case. One of the
problems, that was addressed in the 1D case by Kylstra
et al. [11], was the coupling between positive and negative
energy states induced by the external field. The conclusion
was that at relativistic intensities the negative energy
states gets significantly populated during the action of an
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intense laser pulse, so, in order to obtain an accurate de-
scription of the time evolution of a spinor wavepacket, the
contribution of free negative energy solutions can not be
neglected.

In the present paper we analyze the evolution of the
electron in a different way than was done in the past. For
the electron in the presence of an electric field, we define
particular solutions (named Volkov solutions) of 1D Dirac
equation which evolve from solutions of the free Dirac
equation of given momentum. Although, in contrast with
the 3D case, an analytical expression of these solutions can
not be found, some general properties, as the completeness
and orthogonality remain true. We study the transfer of
population between such states, determined numerically,
for particular initial state and show that, unlike for the
case of free solutions, the coupling between Volkov solu-
tions is much reduced. This shows that these states form
a better suited basis to study the time evolution of the
state spinor. Our main conclusion is that if at the initial
moment negative energy states are practically not present
in the wavespinor, and if the atomic potential is not too
deep, then the Volkov states originating from negative en-
ergy free solutions can be safely neglected.

The one-dimensional Volkov solutions are defined in
Section 2. Numerical results are presented in Section 3,
based on the integration of the 1D Dirac equation for a
model atom with potential energy given in equation (9)
interacting with an external electric pulse described by
equation (10). For a selected solution of the 1D Dirac
equation, we calculate the total probabilities to find the
electron in positive and negative energy free states and
the populations in each of the two types of Volkov states.
The results presented in Figures 2 and 3 illustrate the in-
fluence of the laser intensity and of the potential strength
on the population transfers. Our conclusions are resumed
in Section 4. Details on the numerical method used for the
calculation of Volkov solutions and for the integration of
the Dirac equation in the presence of a potential are given
in the Appendix.

2 The one-dimensional Dirac equation
in an external electric field

The one-dimensional Dirac equation for an electron in-
teracting with a potential V (x) and an external time-
dependent electric field E(t) described by

A(t) = −
t∫
E(t′)dt′

reduces to two uncoupled two components equations of
the form [11]

i
∂Φ

∂t
=

{
cσx[Px +A(t)] + V (x) + c2σz

}
Φ, (1)

such that it is relevant to study only one of them. In the
above equation σx and σz are the Pauli matrices, and Φ
is a two component spinor and atomic units are used.

In the particular case of the free electron (V (x) = 0,
E(t) = 0) equation (1) has the well-known particular so-
lutions

χ±(p;x, t) =
1√
2π

exp[i(px∓ Et)]v±(p), p ∈ (−∞,∞),

(2)
with

v+(p) =
1√

2E(E + c2)

(
E + c2

cp

)

v−(p) =
1√

2E(E + c2)

( −cp
E + c2

)
(3)

and E = c
√
p2 + c2. The spinors χ+(p;x, t) and

χ−(p;x, t) are positive and, respectively, negative fre-
quency solutions. They are also eigenvectors of the oper-
ator Px, corresponding to the eigenvalue p. The ensemble
of solutions χ±(p;x, t) form a complete and orthonormal-
ized set.

In the state described by a spinor Ψ(x, t), the total
probability to find the electron in a positive/negative en-
ergy free state is given by

P±(t) =

∞∫

−∞
dp|v†±(p)Ψ̃(p, t)|2, (4)

where Ψ̃(p, t) is the Fourier transform of the spinor Ψ(x, t)
and v†±(p) are the transpose conjugate of v±(p).

We define the one-dimensional Volkov functions as the
particular solutions of the Dirac equation (1) in the ab-
sence of the atomic potential that at the initial moment
t0, when the external field is supposed to be zero, re-
duce to the free solutions (2). We call these solutions one-
dimensional Volkov solutions because a correspondence
exists with the true Volkov functions [23], which are exact
solutions of the 3D Dirac equation for a charged particle
interacting with an arbitrary electromagnetic pulse with
a fixed direction of propagation. In the absence of the
electromagnetic field the three-dimensional Volkov solu-
tions [23], reduce to free solutions. The properties of the
1D Volkov solutions are briefly presented here; some of
them are similar to those of the usual three dimensional
Volkov solutions.

From the definition, it follows that in the one-
dimensional Dirac equation case, there is a one-to-one
correspondence between Volkov and free solutions, ex-
pressed by

ψ±(p;x, t) = U(t, t0)χ±(p;x, t0), (5)

where U(t, t0) is the evolution operator associated to the
Dirac equation (1) for V = 0. As the momentum operator
Px commutes with the Dirac Hamiltonian in equation (1),
the Volkov solutions are at any moment t eigenspinors of
this operator,

ψ±(p;x, t) =
1√
2π
ν±(p, t) exp(ipx), p ∈ (−∞,∞) (6)
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where the spinor ν(p, t), unlike in the three dimensional
case, is independent on the position. Although its evolu-
tion equation,

i
dν±
dt

=
{
cσx[p+A(t)] + c2σz

}
ν±(p, t), (7)

is much simpler than the corresponding three-dimensional
one, it has no analytical solution. It is also useful to notice
that the spinors ν±(p, t) are the Fourier transforms of the
Volkov spinors ψ±(p;x, t).

Volkov solutions are classified in two categories, ac-
cording to their origin from positive or negative free states.
Even if we can not find the explicit expressions for the
one-dimensional Volkov solutions, one can assert that they
form an orthonormal and complete set, due to the unitar-
ity of the evolution operator. As a consequence, the Volkov
solutions form a basis set, and any spinor Ψ(x, t) can be
written as a continuous linear superposition of them. As
in the case of the free solutions (4), we can define the total
probability to find the particle in Volkov states originating
from positive or negative energy free solutions

Π±(t) =

∞∫

−∞
dp|ν+

±(p)Ψ̃ (p, t)|2. (8)

The physical meaning of Π−(t) was analyzed in the paper
of Krekora et al. [3].

3 Numerical results

We consider an one-dimensional model atom described by
the potential energy

V (x) = −V0 exp
(
−x

2

a2

)
, V0 > 0, (9)

interacting with the laser pulse of Gaussian shape de-
scribed by the potential A(t),

A(t) = A0 exp

[
−

(
1.1774t
τp

)2
]

sin(ωt), T =
2π
ω

;

(10)
with frequency ω = 1 au and full width at half maximum
τp = 1 cycle.

In the numerical calculation we take the parameter
describing the width of the atomic potential a = 2 au,
and, in order to study the effect of the potential depth
on the time evolution of the system, two values of the
potential depth: V0 = 1 au, for which the ground state
energy is Eg = −0.7 au and, respectively, V0 = 5 au, for
which Eg = −4.2 au. The initial state of the system, at a
moment before the beginning of the pulse, is chosen as the
ground state of the isolated atom. We present numerical
results for the peak value of the potential A0 = 25 au, for
which the relativistic effects are small, and A0 = 50 and
100 au, values located outside the validity range of the
non-relativistic approximation.
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Fig. 1. (a) Expectation values of position calculated from
the Dirac equation for V0 = 1 au (full line) and V0 = 5 au
(dashed line) and classical trajectory of the free electron in
the laser pulse (dotted line). (b) Expectation values of posi-
tion for V0 = 1 au, calculated from the Dirac equation (full
line) and Schrödinger equation (dashed line) and classical rel-
ativistic (dotted line) and non-relativistic (long-dashed line)
trajectory.

In order to compare the relativistic and non-relativistic
results, we have also integrated the Schrödinger equation
for the same system parameters, and we have compared
the expectation value of the position operator X cal-
culated within relativistic (〈X〉D(t)) and non-relativistic
(〈X〉S(t)) approach. For A0 = 25 au the relativistic and
non-relativistic results are identical. In Figure 1a the ex-
pectation values are presented as functions of time, for
V0 = 1 au (full line) and V0 = 5 au (dashed line). With
dotted line is represented the classical trajectory of the
free electron in the laser pulse,

α(t) =

t∫
dτA(τ). (11)

One can see that, for V0 = 1 au, the electron moves along
the classical trajectory, which is a consequence of the fact
that the atomic potential is negligible with respect to the
external field. By contrast, in the case V0 = 5 au, the effect
of the atomic potential is important, and 〈X〉(t) and α(t)
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Fig. 2. The function P−(t) in equation (4) for V0 = 1 au and
three values of A0, as indicated in the legend.

are very different. In order to understand this result we
start from the Ehrenfest theorem

〈X〉(t) = α(t) −
t∫
dt′

t′∫
dt′′

〈
dV

dx

〉
(t′′). (12)

In the case V0 = 1 au, the second term in the previous
equation can be neglected, and one obtains 〈X〉(t) ≈ α(t),
while for V0 = 5 au this term is responsible for the differ-
ences observed in Figure 1a. In Figure 1b we have repre-
sented for A0 = 100 au and V0 = 1 au: 〈X〉D(t) (full line),
〈X〉S(t) (dashed line), α(t) (dotted line) and the classical
relativistic trajectory [11] (long dashed line),

αr(t) =

t∫
dτ

A(τ)√
1 +A2(τ)/c2

. (13)

In this case, the effect of the atomic potential is again
negligible with respect to the laser field, and 〈X〉D(t) is
similar to αr(t), while 〈X〉S(t) is similar to α(t). However,
we must note that the difference between them is very
small.

Next, we have calculated P± and Π±, defined in equa-
tions (4) and (8), respectively, for the two values of the
potential V0 = 1, 5 au and for three values of the external
field A0 = 25, 50, 100 au. Our results show that P± are
practically identical at different V0 and fixed A0, but have
a strong dependence on the field intensity. In Figure 2 the
function P−(t) is presented for A0 = 25, 50, 100 au. One
can see that P−(t) increases strongly with A0, reaching a
maximum value of about 0.09 for A0 = 100 au. P+(t) can
be calculated from the relation P+(t) = 1 − P−(t).

In Figure 3 the function Π−(t) is presented for the
same values of the external field intensity as before and of
the potential depth ((a): V0 = 1 and (b): V0 = 5 au). Un-
like in the previous case, the projection of the wavespinor
on the Volkov solutions originating from negative energy
solutions is extremely small even at the largest value of
the field intensity. In spite of this, we are able to under-
stand the structure of Π− as function of time, based on
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Fig. 3. The function Π−(t) in equation (8) for three values of
A0, and two values of the potential depth V0.

the information on the electron trajectories described be-
fore. An important difference between P− and Π− is that
the time-dependence of Π−(t) is influenced also by the
atomic potential depth. For V0 = 1 au Π−(t) has max-
ima of the same order of magnitude as the initial value
Π−(−∞), at moments near t = (1/4+n/2)T with n inte-
ger, which are the moments when the electron is located
near the nucleus (see Fig. 1). This can be easily under-
stood since the transfer of population between Volkov so-
lutions takes place only due to the interaction with the
atomic potential. Between these sharp maxima the value
of Π−(t) is almost constant, and much reduced. We also
notice that higher the field intensity, sharper the max-
ima are; the explanation is that for higher field intensity
the electron crosses the region around nucleus with large
speed, so the time spent near the origin is smaller. The
situation is similar for the case V0 = 5 au; however, some
differences exist. First, we notice that the initial value of
Π− is larger than in the previous case, which is due to the
fact that the binding energy of the ground state is larger.
The general features for A0 = 50 and 100 au are the same
as in the previous case: they have peaks localized around
the same positions as for V0 = 1 au, and their width and
height have the same behaviour with A0. For A0 = 25 au,
the behaviour of Π−(t) is very different, however: it has a
peak around t = −T , and a wide maxima near the t = 0.
This situation appears because the trajectory followed by
the electron is different in this case. From Figure 1 one
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can see that, unlike in the previous situations, the trajec-
tory crosses the origin near those two moments, and, as a
consequence a transfer of population takes place. However,
we must keep in mind that during the interaction with the
pulse the wavepacket spreads too, and at A0 = 25 au the
amplitude of oscillation is relatively small, such that dur-
ing the second part of the pulse the wavespinor is always
overlapping with the nucleus.

Our results show that, unlike the negative energy free
states, the Volkov states originating from them are prac-
tically not populated during the interaction with the ex-
ternal field, even at relatively high external field intensity.
The transfer of population between them takes place only
at the moments when the wavepacket overlaps with the
nucleus, and, at fixed laser intensity, is more important
for deeper atomic potentials. From this we can infer that
at least for not too deep potentials and if the initial state
is a low energy one, it should be possible to numerically
solve the Dirac equation in a basis set consisting only in
Volkov states originating from positive energy solutions.
The same conclusion should apply also for the three di-
mensional case; in fact, this case should be even more con-
venient from this point of view, as the electron is pushed
away from the nucleus due to the retardation effects, so
the interaction with the nucleus is even less important. We
mention also that in the 3D case the solving of the Dirac
equation in a Volkov state basis is favored by the fact that
the Volkov solutions have known analytical expression.

4 Conclusions

In conclusion, we have numerically integrated the one-
dimensional Dirac equation for an atom interacting with
a laser pulse. We have calculated the expectation value
of the position operator X as a function of time, and we
have compared the results with the corresponding non-
relativistic ones. The comparison shows that even at the
highest intensity studied the relativistic effects on 〈X〉 are
extremely small.

We have also studied the population on negative en-
ergy free states and we have seen that it practically does
not depend on the atomic potential depth, but increases
fast with the increasing of the laser intensity. By contrast,
the population on Volkov states originating from negative
energy free states is extremely small, and do not exceed
the value at the initial moment. The transfer of popula-
tion takes place only as a consequence of the interaction of
the wavepacket with the atomic potential, at the moments
when the two overlap.

We have suggested the possibility to analyze in a sim-
ilar way a solution of 3D Dirac equation.

This work was supported by Romanian ANCS, under the
grant CEEX-05-D11-56/10.10.2005. The authors express their
thanks to Mihai Dondera for useful criticism of the manuscript.

Appendix A: Details on the numerical
calculation

The numerical integration of the one-dimensional Dirac
equation in the presence of the atomic potential was per-
formed using the split-operator method. The most impor-
tant complication arising in this case is related to the fact
that due to the presence of the term c2 in the Hamiltonian
the time step δt must be chosen such that c2δt � 1 [11],
which gives a very small value for δt of the order 10−8

au, and, as a consequence, the numerical code will be ex-
tremely slow. In order to save some running time we made
use of the fact that the Hamiltonian depends on time only
due to the field A(t) which changes in time with the fre-
quency ω of the order of unity. So the same value of A can
be used for several consecutive time-steps, and the prop-
agator could be recalculated only once for several consec-
utive time-steps.

In the numerical examples presented in Section 3 the
initial state is chosen the ground state of the unperturbed
atom, whose knowledge is required with a very good ac-
curacy. The calculation was performed using a method
proposed by Muller [24]: using as initial condition an ap-
proximation of the ground state, one integrates the Dirac
equation for the electron in the atomic potential, and the
eigenstate we are looking for is identified with the time
average

〈Ψ(x, t) exp (iE0t)〉τ , (A.1)

where E0 is an approximation of the ground state energy
and the time average must be taken along a sufficiently
long time-interval τ such that the convergence is reached.

In order to numerically calculate the Volkov solutions
ψ±(p;x, t) we must in fact solve equation (7), with the
initial conditions

ν±(p, t0) = v±(p), (A.2)

with v±(p) defined in (3). Formally, the equation can be
written as

ν±(p, t) = Uv(t, t0; p)v±(p), (A.3)

where Uv(t, t0; p) is the time-evolution operator associated
to equation (7), and it can be easily numerically solved
since the “Hamiltonian” in equation (7) is a multiplicative
operator.

The accuracy of our code was checked by performing
convergence tests with respect to all relevant parameters.
Our conclusion is that the numerical results presented here
are affected by an error of at most 1%.
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